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Overall Objective

Objective: Develop a decision support system for design 
of AEPS modules that facilitates optimized tradeoff 
explorations of thermal, reliability, and cost at the earliest 
stages of the development
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Thermal: Objective
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Integration Software

Objective: Develop a computationally efficient model for 
predicting and optimizing transient thermal performance of 
liquid cooled AEPS modules



Thermal Model

Thermal model has two main parts:
• 1st part*: obtains transient surface temperature 

based on ThinPakTM transient heat dissipation
• 2nd part: impedance network, using

maximum surface temperature obtains 
maximum junction temperature

ThinPakTM-holding 
substrate

ThinPakTM

multiple substrate 
layers

ZLayer ZCold

cold plate

heat 
generation ZThinPak ZSub

* Kokkas, A. “Thermal Analysis of Multiple-Layer Structure,” IEEE Transactions on Electron Devices, 21(11), 
pp. 674-681, 1974



Thermal: Case Study 

Assumptions:
• Uniform heat distribution for ThinPaksTM

• Adiabatic open surfaces for the module
• Thermal properties of module independent of temperature
• Initially, module and coolant with same temperature
• Heat generation only from ThinPaksTM

• ThinPakTM: 5 mm x 5 mm x 2 mm, dissipates 200 W for 5 sec   
• 50 mm x 50 mm < (substrate & cold plate) < 100 mm x 100 mm

Problem: Optimize ThinPakTM locations:
• Minimize “maximum junction temperature”
• Minimize “overall coolant pressure drop”

Kaczorowski, P.R., Y. Joshi, and S. Azarm, “Thermal-Based Multi-Objective Optimal Design of Liquid Cooled Power 
Electronic Modules,” 19th Semiconductor Thermal Measurement and Management Symposium (“SEMITHERM"), San 
Jose, CA, March 11-13, 2003 (submitted)



Thermal: Case Study 
Results

Pareto optimum locations of ThinPaksTM on a single 
substrate attached to a cold plate: 
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Reliability: Objective
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Objective: Develop models for critical failure mechanisms 
of AEPS modules



Reliability: Attach Modeling

• Developed viscoplastic semi
analytical model for fatigue of
attach in ThinPakTM modules

• Developed iterative crack
propagation model for fatigue of
attach in multi-layer modules

• Validated models against -55oC
to 150oC  thermal cycling results
for ThinPakTM modules

• Revealed dominant failure
mechanism to be attach fatigue
at the copper strap leading to
design modification

Copper Strap

Ceramic Lid

Die

Copper Strap



Reliability: Attach Properties

• Determined constitutive properties
for attach materials to assess the
fatigue resistance of the attach

• Developed test sample configuration
and protocol for determining the
fatigue coefficients for attach materials
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Reliability: DBC-AlN Cracking
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• Determined crack initiation
site in DBC-AlN to be at
edges of the copper using
FEM and experimental
observation of thermal shock
test results 

• Developed an analytical
model for copper edge
cracking of DBC using Paris’
law and the method of Drory
for calculating KI and KII

• Confirmed the analytical
model for copper edge
cracking using FEM for
determining KI and KII



Cost: Objective
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Objective: Develop an economic analysis tool that can 
be used concurrently with thermal and reliability analysis 
for optimization of AEPS modules



Cost: Process-Flow Modeling

Developed process-based 
model that simulates 
manufacturing and life cycle 
operations to estimate cost 
and yield

Cold Plate 
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• Models varying designs and 
process flows

• Accounts for uncertainties in all 
of the input data

• Accommodates detailed 
test/rework economics
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Cost: Test/Diagnosis/Rework

Developed a new test/diagnosis/rework model that can be 
used with process flow based cost modeling
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Features:
• Arbitrary number of rework 

attempts
• False positives in testing
• Defects introduced by test, 

diagnosis and/or rework
• User definable fault 

coverage, diagnosis and 
rework success rates

• Variable rework costs
• Accommodation of data 

input uncertainties
T. Trichy, P. Sandborn, R. Raghavan, and S. Sahasrabudhe, “A New 
Test/Diagnosis/Rework Model for Use in Technical Cost Modeling of 
Electronic Systems Assembly,” Proceedings of the International Test 
Conference, pp. 1108-1117, November 2001



Cost: Test Location Optimization
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Which test/diagnosis/rework 
steps should be included to 
minimize yielded cost?
•Genetic algorithm for placing test 
steps and selecting fault coverage
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Optimization and Selection: 
Objective
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Objective: Develop a decision support system with Multi-
Objective Optimization and Selection methods to choose 
the “most preferred” AEPS module design alternative



Optimization with MOGA
Multi-Objective Genetic Algorithm
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2. Generate random initial designs
3. Evolve via crossover and mutation 

1. Code AEPS module designs into “chromosomes”

4. Fitness of a design evaluated based 
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Farhnag-Mehr, A., and S. Azarm, “Entropy Based Multiobjective Genetic Algorithm for Design Optimization,”
Structural and Multidisciplinary Optimization, 2002 (in press)
Reynold, B., and S. Azarm, “A Mutiobjective Hybrid Heuritic-Based Genetic Algorithm,” Mechanics of  
Structures and Machines, 2002 (in press)



Optimization: Case Study 
Variables:
L,W :  Length and Width of heat sink
TS :  Thickness of Substrate
TD :  Thickness of Die attach
S :  Spacing between channels
D :  Diameter of channels
V :  Inlet velocity
KH :  Heat sink material
KS :  Substrate material
Kso :  Solder Material

LC

V

S

W

D

Substrate

L

Heat SinkTH

Design objectives:
• Maximum junction temp

• Cost

• Cycles to failure

Constants:
N :  Number of devices
LC,WC :  Length and width of ThinPackTM

TH : Thickness of sink
TC : Thickness of copper layer
Tso : Thickness of solder layer
Q :  Power dissipated by device



Optimization: Case Study 
Pareto Optimum Solutions
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Which AEPS module design alternative, 
among Pareto solutions, is the “most preferred”?



Selection

Designer’s Preferences

Uncertainties Most Preferred 
DesignSelection Metric
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Besharati, B., S. Azarm, and A. Farhang-Mehr, “A Customer-Based Expected Utility Metric for Product 
Design Selection,” CD-ROM Proceedings of the ASME IDETC, Montreal, Canada, Sept 2002



Selection: Definitions 
Purchase Decision and Demand

• Customer buys a product if level of attribute x is within 
customer range: [a,b]

• Normalized demand (MS)

For attribute levels x:

1

a b x

Dp 

 If  x is within customer range 
If x is outside customer range 


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=
0
1

)(p xD
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D
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N
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x

x

N = number of customers in market



Selection: Definitions (cont’d)
Probability of Success (Ps )

 

Design range

Customer 
range 

Attribute (x) 

PDF 

Area within 
common range

a b

Suh, N. P., Axiomatic Design: Advances and Applications, Oxford University Press, New York, 2001
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Selection: Metric
Customer-Based Expected Utility (CEU)

 p, U, Dp 

U(x) 

x 

Dp(x)

p(x) 

• Single customer:
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Selection: Methodology

...

Design input 
parameters

Simulation 
model

Attributes 
levels

Monte Carlo simulation
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Selection: Case Study
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Problem: Select AEPS module design 
from the Pareto solutions, given 
purchase decision profiles:
• Single customer: Navy Ships
• Multiple customers: Navy Ships;

Industrial Drives; and Electric Vehicles

Designer’s utility:
• Temperature and reliability are

more important than cost
• Reliability is more important than

temperature
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Selection: Case Study 
Results

16 Thinpacks 8 Thinpacks 4 Thinpacks
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The CEU metric:
• Penalizes alternatives falling outside customer’s requirements

• Selects, among alternatives within customer’s requirements, 
the alternative with highest designer’s utility



Summary

Developed for AEPS module architectures:
• Transient thermal compact model with multiple device

interactions
• Failure mechanisms, including attach fatigue and

substrate fracture models
• Process flow based cost model with test/diagnosis/rework

capabilities
• Multi-objective design optimization and selection methods
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